Правда о пароизоляции
Пароизоляционный слой играет в составе кровельного пирога далеко не последнюю роль, хотя зачастую многие проектировщики и строители им неоправданно пренебрегают. Основная задача пароизоляции – создание барьера, непроницаемого для водяных паров. Это связано с необходимостью защиты слоя утеплителя от прохождения через него паров воды и возможной конденсации влаги в зоне расположения «точки росы».
Ввиду большой разницы температур и показателей влажности (особенно в холодный период) внутри и снаружи здания, давление водяных паров на ограждающие конструкции огромно. Пары воды согласно известным законам физики устремляются наружу здания, проходя поочередно все слои. Проходя через слой утеплителя, где по расчету находится зона «точки росы», пары начинают конденсироваться, превращаясь в воду. Утеплитель насыщается водой и постепенно утрачивает свои функции, зачастую превращаясь в слой балласта, лишь перегружающий несущие конструкции покрытия. В особенной мере это характерно для слоев минеральной ваты, очень часто применяющейся при возведении традиционных плоских кровель ввиду отличных противопожарных характеристик.
Намокание утеплителя приводит еще и к его деформации, сказывающейся на деформации всего пирога и приводящей к выходу из строя системы механического крепления гидроизоляционного материала. Конечно, применение гидрофобных материалов для теплоизоляции покрытия позволяет решить проблему разрушения утеплителя при намокании. Однако при этом открытым остается вопрос, связанный с протеканием образовавшегося в слое утеплителя конденсата во внутренние помещения, что приводит не только к разрушению внутренней отделки, но и к коррозии несущих конструкций, что может со временем привести к тяжелым последствиям. Таким образом, слой пароизоляции является крайне необходимым элементом конструкции традиционного кровельного пирога.
Многие проектировщики и строители, не до конца понимающие суть вопроса или желающие сэкономить, относятся к пароизоляционному слою по принципу «лишь бы было». При этом применяются материалы, не соответствующие требованиям теплотехнических принципов, а их монтаж осуществляется с нарушением технологии. Так львиную долю пароизоляционных материалов занимают полиэтиленовые пленки. И хотя сам полиэтилен действительно является хорошим паробарьером, необходимо учитывать еще и такие показатели как толщина пароизоляционного слоя и паропропускная способность слоя гидроизоляции.
Основным принципом правильной работы всего подкровельного пространства является следующее правило: количество водяных паров, попадающей в подкровельное пространство через слой пароизоляции не должно превышать количества паров, выходящих через гидроизоляционный слой кровли. Следовательно, паропропускная способность гидроизоляционного кровельного ковра должна быть не меньше паропропускной способности слоя пароизоляции.
Следует отметить, что любой известный материал, применяющийся для пароизоляции, обладает определенной паропроницаемостью. Исключение составляют материалы со слоем металла или стекла, имеющие нулевую паропроницаемость.
В европейской практике паропроницаемость материалов оценивается таким показателем как коэффициент диффузии водяного пара (µ), отражающим разницу между паропроницаемостью материала и слоя воздуха одинаковой толщины. Этот безразмерный коэффициент показывает, во сколько раз материал лучше сопротивляется проникновению водяного пара по сравнению с воздухом.
Чем выше значение коэффициента µ, тем материал лучше с точки зрения пароизоляции. Например, коэффициент сопротивления диффузии водяного пара для полиэтилена - µ=200000, для битумных материалов µ=70000, а для полимерных мембран на основе пластифицированного ПВХ – около 20000.
В европейских странах для оценки пароизоляционных и диффузионных способностей материалов используют эквивалентную толщину (в метрах) диффузии водяного пара (Sd) – произведение коэффициента сопротивления диффузии водяного пара (µ) и толщины материала (d). При устройстве традиционного кровельного пирога с применением для пароизоляции слоя полиэтиленовой пленки стандартной толщиной 0,2 мм и гидроизоляционным ковром из битумных наплавляемых материалов толщиной около 8 мм (2 слоя материала толщиной 4 мм) имеем:
Sd (пароизоляционный слой): 200000*0,0002=40 м.
Sd (гидроизоляционный слой): 70000*0,008=560 м.
Одним из вариантов решения этой проблемы является применение для слоя гидроизоляции ПВХ-мембран, отличающихся высокой паропропускной способностью. При стандартной толщине мембраны 1,5 мм значение Sd будет на уровне 20000*0,0015=30 м. При этом остается достаточно острым вопрос устройства герметичных соединений отдельных полотен пароизоляции из полиэтилена. Вопреки рекомендациям строители предпочитают обходиться 10-15-ти сантиметровым нахлестом отдельных полотен.
Таким образом, только комплексный подход к выбору кровельных материалов и их сочетанию может обеспечить получение надежной и долговечной кровли.